ABSTRACT
The identification of genes contributing to Parkinson's disease (PD) has allowed for
an improved understanding of the underlying pathogenesis of the disorder. The authors
review the rapidly growing field of PD genetics, with a focus on the clinical, genetic,
and pathophysiologic features of well-validated monogenic forms of PD caused by mutations
in the SNCA , LRRK2 , Parkin , PINK1 , DJ-1, and ATP13A2 genes. In addition, they discuss mutations in the GBA gene, which increase susceptibility for PD. The authors also evaluate the implications
of genome-wide association studies and stem cell-derived disease models and give recommendations
for genetic testing.
KEYWORDS
Parkinson's disease - genetics - monogenic - genome-wide association study - stem
cells
REFERENCES
1
Polymeropoulos M H, Lavedan C, Leroy E et al..
Mutation in the alpha-synuclein gene identified in families with Parkinson's disease.
Science.
1997;
276
(5321)
2045-2047
2
Spira P J, Sharpe D M, Halliday G, Cavanagh J, Nicholson G A.
Clinical and pathological features of a parkinsonian syndrome in a family with an
Ala53Thr alpha-synuclein mutation.
Ann Neurol.
2001;
49
(3)
313-319
3
Nishioka K, Hayashi S, Farrer M J et al..
Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson's disease.
Ann Neurol.
2006;
59
(2)
298-309
4
Ross O A, Braithwaite A T, Skipper L M et al..
Genomic investigation of alpha-synuclein multiplication and parkinsonism.
Ann Neurol.
2008;
63
(6)
743-750
5
Bertoncini C W, Fernandez C O, Griesinger C, Jovin T M, Zweckstetter M.
Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized
conformation.
J Biol Chem.
2005;
280
(35)
30649-30652
6
Chen L, Feany M B.
Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in
a Drosophila model of Parkinson disease.
Nat Neurosci.
2005;
8
(5)
657-663
7
Brice A.
Genetics of Parkinson's disease: LRRK2 on the rise.
Brain.
2005;
128
(Pt 12)
2760-2762
8
Healy D G, Falchi M, O'Sullivan S S International LRRK2 Consortium et al.
Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's
disease: a case-control study.
Lancet Neurol.
2008;
7
(7)
583-590
9
Wszolek Z K, Pfeiffer R F, Tsuboi Y et al..
Autosomal dominant parkinsonism associated with variable synuclein and tau pathology.
Neurology.
2004;
62
(9)
1619-1622
10
Lesage S, Leutenegger A L, Ibanez P French Parkinson's Disease Genetics Study Group
et al.
LRRK2 haplotype analyses in European and North African families with Parkinson disease:
a common founder for the G2019S mutation dating from the 13th century.
Am J Hum Genet.
2005;
77
(2)
330-332
11
Ozelius L J, Senthil G, Saunders-Pullman R et al..
LRRK2 G2019S as a cause of Parkinson's disease in Ashkenazi Jews.
N Engl J Med.
2006;
354
(4)
424-425
12
Martin I, Dawson V L, Dawson T M.
Recent advances in the genetics of Parkinson's disease.
Annu Rev Genomics Hum Genet.
2011;
12
301-325
13
Smith W W, Pei Z, Jiang H, Dawson V L, Dawson T M, Ross C A.
Kinase activity of mutant LRRK2 mediates neuronal toxicity.
Nat Neurosci.
2006;
9
(10)
1231-1233
14
Lücking C B, Dürr A, Bonifati V French Parkinson's Disease Genetics Study Group et
al.
Association between early-onset Parkinson's disease and mutations in the parkin gene.
N Engl J Med.
2000;
342
(21)
1560-1567
15
Klein C, Lohmann-Hedrich K.
Impact of recent genetic findings in Parkinson's disease.
Curr Opin Neurol.
2007;
20
(4)
453-464
16
Mori H, Kondo T, Yokochi M et al..
Pathologic and biochemical studies of juvenile parkinsonism linked to chromosome 6q.
Neurology.
1998;
51
(3)
890-892
17
Hristova V A, Beasley S A, Rylett R J, Shaw G S.
Identification of a novel Zn2+-binding domain in the autosomal recessive juvenile
Parkinson-related E3 ligase parkin.
J Biol Chem.
2009;
284
(22)
14978-14986
18
Henn I H, Bouman L, Schlehe J S et al..
Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappaB
signaling.
J Neurosci.
2007;
27
(8)
1868-1878
19
Palacino J J, Sagi D, Goldberg M S et al..
Mitochondrial dysfunction and oxidative damage in parkin-deficient mice.
J Biol Chem.
2004;
279
(18)
18614-18622
20
Grünewald A, Voges L, Rakovic A et al..
Mutant parkin impairs mitochondrial function and morphology in human fibroblasts.
PLoS ONE.
2010;
5
(9)
e12962
21
Shin J H, Ko H S, Kang H et al..
PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's
disease.
Cell.
2011;
144
(5)
689-702
22
Vives-Bauza C, Zhou C, Huang Y et al..
PINK1-dependent recruitment of Parkin to mitochondria in mitophagy.
Proc Natl Acad Sci U S A.
2010;
107
(1)
378-383
23
Klein C, Djarmati A, Hedrich K et al..
PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism.
Eur J Hum Genet.
2005;
13
(9)
1086-1093
24
Steinlechner S, Stahlberg J, Völkel B et al..
Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations.
J Neurol Neurosurg Psychiatry.
2007;
78
(5)
532-535
25
Li Y, Tomiyama H, Sato K et al..
Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism.
Neurology.
2005;
64
(11)
1955-1957
26
Valente E M, Salvi S, Ialongo T et al..
PINK1 mutations are associated with sporadic early-onset parkinsonism.
Ann Neurol.
2004;
56
(3)
336-341
27
Valente E M, Abou-Sleiman P M, Caputo V et al..
Hereditary early-onset Parkinson's disease caused by mutations in PINK1.
Science.
2004;
304
(5674)
1158-1160
28
Clark I E, Dodson M W, Jiang C et al..
Drosophila pink1 is required for mitochondrial function and interacts genetically
with parkin.
Nature.
2006;
441
(7097)
1162-1166
29
Liu W, Acín-Peréz R, Geghman K D, Manfredi G, Lu B, Li C.
Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission.
Proc Natl Acad Sci U S A.
2011;
108
(31)
12920-12924
30
Pankratz N, Pauciulo M W, Elsaesser V E Parkinson Study Group - PROGENI Investigators
et al.
Mutations in DJ-1 are rare in familial Parkinson disease.
Neurosci Lett.
2006;
408
(3)
209-213
31
Bonifati V, Rizzu P, van Baren M J et al..
Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism.
Science.
2003;
299
(5604)
256-259
32
Takahashi-Niki K, Niki T, Taira T, Iguchi-Ariga S M, Ariga H.
Reduced anti-oxidative stress activities of DJ-1 mutants found in Parkinson's disease
patients.
Biochem Biophys Res Commun.
2004;
320
(2)
389-397
33
Malgieri G, Eliezer D.
Structural effects of Parkinson's disease linked DJ-1 mutations.
Protein Sci.
2008;
17
(5)
855-868
34
Irrcher I, Aleyasin H, Seifert E L et al..
Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics.
Hum Mol Genet.
2010;
19
(19)
3734-3746
35
Ramirez A, Heimbach A, Gründemann J et al..
Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding
a lysosomal type 5 P-type ATPase.
Nat Genet.
2006;
38
(10)
1184-1191
36
Behrens M I, Brüggemann N, Chana P et al..
Clinical spectrum of Kufor-Rakeb syndrome in the Chilean kindred with ATP13A2 mutations.
Mov Disord.
2010;
25
(12)
1929-1937
37
Park J S, Mehta P, Cooper A A et al..
Pathogenic effects of novel mutations in the P-type ATPase ATP13A2 (PARK9) causing
Kufor-Rakeb syndrome, a form of early-onset parkinsonism.
Hum Mutat.
2011;
32
(8)
956-964
38
Khan N L, Scherfler C, Graham E et al..
Dopaminergic dysfunction in unrelated, asymptomatic carriers of a single parkin mutation.
Neurology.
2005;
64
(1)
134-136
39
Khan N L, Valente E M, Bentivoglio A R et al..
Clinical and subclinical dopaminergic dysfunction in PARK6-linked parkinsonism: an
18F-dopa PET study.
Ann Neurol.
2002;
52
(6)
849-853
40
Vilariño-Güell C, Wider C, Ross O A et al..
VPS35 mutations in Parkinson disease.
Am J Hum Genet.
2011;
89
(1)
162-167
41
Zimprich A, Benet-Pagès A, Struhal W et al..
A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset
Parkinson disease.
Am J Hum Genet.
2011;
89
(1)
168-175
42
Sidransky E, Nalls M A, Aasly J O et al..
Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease.
N Engl J Med.
2009;
361
(17)
1651-1661
43
Mazzulli J R, Xu Y H, Sun Y et al..
Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic
loop in synucleinopathies.
Cell.
2011;
146
(1)
37-52
44
Nalls M A, Plagnol V, Hernandez D G International Parkinson Disease Genomics Consortium
et al.
Imputation of sequence variants for identification of genetic risks for Parkinson's
disease: a meta-analysis of genome-wide association studies.
Lancet.
2011;
377
(9766)
641-649
45
Klein C, Ziegler A.
From GWAS to clinical utility in Parkinson's disease.
Lancet.
2011;
377
(9766)
613-614
46 Lill C M, Roehr J T, McQueen M B et al.. The PDGene database. Alzheimer research
forum. Available at: http://www.pdgene.org/ Accessed December 8, 2011
47
Harbo H F, Finsterer J, Baets J EFNS et al.
EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues,
Huntington's disease, Parkinson's disease and dystonias.
Eur J Neurol.
2009;
16
(7)
777-785
48
Jacobs H, Latza U, Vieregge A, Vieregge P.
Attitudes of young patients with Parkinson's disease towards possible presymptomatic
and prenatal genetic testing.
Genet Couns.
2001;
12
(1)
55-67
49
Nguyen H N, Byers B, Cord B et al..
LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative
stress.
Cell Stem Cell.
2011;
8
(3)
267-280
50
Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D.
Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1
induced pluripotent stem cells.
J Neurosci.
2011;
31
(16)
5970-5976
51
Rhee Y H, Ko J Y, Chang M Y et al..
Protein-based human iPS cells efficiently generate functional dopamine neurons and
can treat a rat model of Parkinson disease.
J Clin Invest.
2011;
121
(6)
2326-2335
52
Caiazzo M, Dell'Anno M T, Dvoretskova E et al..
Direct generation of functional dopaminergic neurons from mouse and human fibroblasts.
Nature.
2011;
476
(7359)
224-227
53
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C.
Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2,
PINK1, PARK7, and LRRK2 genes: a mutation update.
Hum Mutat.
2010;
31
(7)
763-780
54
Klein C, Schlossmacher M G.
The genetics of Parkinson disease: implications for neurological care.
Nat Clin Pract Neurol.
2006;
2
(3)
136-146
Anne GrünewaldPh.D.
Section of Clinical and Molecular Neurogenetics, Department of Neurology, University
of Lübeck
Ratzeburger Allee 160, Lübeck 23538, Germany
Email: anne.gruenewald@neuro.uni-luebeck.de